TY - JOUR
T1 - Infinitely frequent measurements and quantum Zeno effect
AU - Hradil, Zdenek
AU - Nakazato, Hiromichi
AU - Namiki, Mikio
AU - Pascazio, Saverio
AU - Rauch, Helmut
N1 - Funding Information:
A discussion with Jian-wei Pan and Yong-de Zhang is gratefully acknowledged. This work was partly supported by the TMR Network ERB FMRXCT 96-0057 “Perfect Crystal Neutron Optics” of the European Union, by the East-West program of the Austrian Academy of Sciences and by the Grant-in-Aid for International Scientific Research: Joint Research (No. 08044097) of the Japanese Ministry of Education. Science and Culture.
PY - 1998/3/16
Y1 - 1998/3/16
N2 - The limit of infinitely many measurements is critically analyzed within the quantum mechanical framework, in connection with the quantum Zeno effect. It is shown that such a limit is unphysical and that quantum losses are unavoidable. A specific example involving neutron spin is considered.
AB - The limit of infinitely many measurements is critically analyzed within the quantum mechanical framework, in connection with the quantum Zeno effect. It is shown that such a limit is unphysical and that quantum losses are unavoidable. A specific example involving neutron spin is considered.
KW - Quantum measurement
KW - Zeno effect
UR - http://www.scopus.com/inward/record.url?scp=0042123150&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042123150&partnerID=8YFLogxK
U2 - 10.1016/S0375-9601(97)00860-8
DO - 10.1016/S0375-9601(97)00860-8
M3 - Article
AN - SCOPUS:0042123150
SN - 0375-9601
VL - 239
SP - 333
EP - 338
JO - Physics Letters, Section A: General, Atomic and Solid State Physics
JF - Physics Letters, Section A: General, Atomic and Solid State Physics
IS - 6
ER -