Abstract
The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.
Original language | English |
---|---|
Article number | 265202 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 43 |
Issue number | 26 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Modelling and Simulation
- Mathematical Physics
- Physics and Astronomy(all)