Interaction between surge behavior and internal flow field in an axial-flow compressor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Interaction between surge behavior and internal flow field under coexisting phenomena of surge and rotating stall was experimentally investigated. In the experiment, the tank pressure of the compressor during surge was measured to detect the effect of the back-pressure fluctuation on the change in the internal flow field. Furthermore, the rotating stall in the compressor was investigated to define the influence of an unsteady internal flow field change on the surge behavior. From the tank pressure measurements, the amplitude of the tank pressure fluctuation was found to vary depending on the cycle. A larger maximal value for the tank pressure fluctuation led to a higher flow rate where the stall inception occurred. This difference in the flow rate indicated that the stall was induced by a severe adverse pressure gradient in the compressor. Then, the absolute rate of change in the flow coefficient was increased by both a large decrease in the compressor back pressure and performance degradation from stalling. In a case where the rate of decline in the flow rate was large, the scale of the stall cell developed up to a deep stall according to the movement of the operating point. Thus, a large trajectory for the surge cycle was selected, where the unsteady operating point went through the deep stall region. This development in the scale of the stall cell suggested to be influenced by the instability of the inner flow field caused by the rapid change in the flow rate.

Original languageEnglish
Title of host publicationFluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851579
DOIs
Publication statusPublished - 2018
EventASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018 - Montreal, Canada
Duration: 2018 Jul 152018 Jul 20

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume3
ISSN (Print)0888-8116

Other

OtherASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Country/TerritoryCanada
CityMontreal
Period18/7/1518/7/20

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Interaction between surge behavior and internal flow field in an axial-flow compressor'. Together they form a unique fingerprint.

Cite this