TY - JOUR
T1 - Interplay of vesicle and Lamellae formation in an amphiphilic polyfluorene-b-polythiophene all-conjugated diblock copolymer at the air-water interface
AU - Park, Jin Young
AU - Koenen, Nils
AU - Forster, Michael
AU - Ponnapati, Ramakrishna
AU - Scherf, Ullrich
AU - Advincula, Rigoberto
PY - 2008/8/26
Y1 - 2008/8/26
N2 - Interfacial behavior and surface morphology of an amphiphilic, all-conjugated rod-rod diblock copolymer, poly[9,9-bis(2-ethylhexyl)fluorene]-b- poly[3-(6-diethylphosphonatohexyl)thiophene] or PF2/6-b-P3PHT, were investigated by a combination of Langmuir-Blodgett (LB) techniques, optical spectroscopy, and atomic force microscopy (AFM). For the PF2/6-b-P3PHT diblock copolymer aggregates, well-defined gas, liquid-expanded, liquid-condensed, and solid states were observed at the air-water interface. The backbones of the polar P3PHT blocks exhibited an edge-on arrangement which is driven by the pendant alkyl chains with the polar phosphate groups; i.e., the polymer main chain orients parallel to the air/water interface with the planes of the thiophene rings in vertical orientation (edge-on). For comparison of the optical properties, three different LB films (transferred at surface pressures of 5, 15, and 50 mN/m), spin- or drop-cast films, and solutions were investigated. Spectral shifts and intensity changes of UV-vis absorption and photoluminescence emission of the films were correlated to changes of the surface morphology. The emission properties after excitation into the higher-bandgap PF2/6 absorption band were governed by both Förster resonance energy transfer (FRET) and conformational changes within the P3PHT block. The AFM images illustrate the formation of vesicular species and their transition into a monolayer lamellar phase upon increased surface pressure and a correlation of the optical properties and aggregation state at the air/water interface.
AB - Interfacial behavior and surface morphology of an amphiphilic, all-conjugated rod-rod diblock copolymer, poly[9,9-bis(2-ethylhexyl)fluorene]-b- poly[3-(6-diethylphosphonatohexyl)thiophene] or PF2/6-b-P3PHT, were investigated by a combination of Langmuir-Blodgett (LB) techniques, optical spectroscopy, and atomic force microscopy (AFM). For the PF2/6-b-P3PHT diblock copolymer aggregates, well-defined gas, liquid-expanded, liquid-condensed, and solid states were observed at the air-water interface. The backbones of the polar P3PHT blocks exhibited an edge-on arrangement which is driven by the pendant alkyl chains with the polar phosphate groups; i.e., the polymer main chain orients parallel to the air/water interface with the planes of the thiophene rings in vertical orientation (edge-on). For comparison of the optical properties, three different LB films (transferred at surface pressures of 5, 15, and 50 mN/m), spin- or drop-cast films, and solutions were investigated. Spectral shifts and intensity changes of UV-vis absorption and photoluminescence emission of the films were correlated to changes of the surface morphology. The emission properties after excitation into the higher-bandgap PF2/6 absorption band were governed by both Förster resonance energy transfer (FRET) and conformational changes within the P3PHT block. The AFM images illustrate the formation of vesicular species and their transition into a monolayer lamellar phase upon increased surface pressure and a correlation of the optical properties and aggregation state at the air/water interface.
UR - http://www.scopus.com/inward/record.url?scp=51549099799&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51549099799&partnerID=8YFLogxK
U2 - 10.1021/ma702402g
DO - 10.1021/ma702402g
M3 - Article
AN - SCOPUS:51549099799
SN - 0024-9297
VL - 41
SP - 6169
EP - 6175
JO - Macromolecules
JF - Macromolecules
IS - 16
ER -