Abstract
The integration of functional components such as metal nanoparticles, metal salts, or ionic liquids with well-defined block copolymer (BCP) nanotemplates via noncovalent bond interactions has afforded hybrid functional materials. Here, we designed an ionic liquid (IL)-functionalized redox-active TEMPO (2,2,6,6-tetramethylpiperidine-N-oxy) radical (guest), investigated phase-selective incorporation/placement into host BCP nanostructured matrices, and established a rational approach to functionalize BCP templates. On-demand domain functionalization of poly(styrene-b-ethylene oxide) (PS-b-PEO) was triggered by ion-ionophore interaction, as verified by the suppression of PEO melting transition in DSC, and the swelling behavior of the PEO spherical domain in AFM, TEM, and X-ray scattering characterizations. The obtained BCP layer containing the redox-active TEMPO and IL was utilized as an active layer in the diode-structured memory device, which exhibited on/off resistive switching (on/off ratio >10<sup>3</sup>). Systematic placement of TEMPO and IL in the BCP spherical domain allowed for tuning of the switching characteristics and revealed that the formation of a discontinuous redox-active domain was critical for rewritable resistive switching.
Original language | English |
---|---|
Pages (from-to) | 892-896 |
Number of pages | 5 |
Journal | ACS Macro Letters |
Volume | 4 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2015 Sept 15 |
ASJC Scopus subject areas
- Organic Chemistry
- Materials Chemistry
- Polymers and Plastics
- Inorganic Chemistry