Irreversibility analysis of falling film absorption over a cooled horizontal tube

Niccolo Giannetti*, Andrea Rocchetti, Kiyoshi Saito, Seiichi Yamaguchi

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    Based on a numerical study of the water vapour absorption process in LiBr-H<inf>2</inf>O solution, for a laminar, gravity driven, viscous, incompressible liquid film, flowing over a horizontal cooled tube, irreversibilities related to fluid friction, heat transfer, mass transfer and their coupling effects have been locally and globally examined. The hydrodynamic description is based on Nusselt boundary layer assumptions. The tangential and normal velocity components, respectively obtained from momentum and continuity equations, have been used for the numerical solution of mass and energy transport equations in the two-dimensional domain defined by the film thickness and the position along the tube surface. Local entropy generation calculation can be performed referring to the calculated velocity, temperature and concentration fields. Results have been explored in different operative conditions, in order to examine comprehensively the impact of the various irreversibility sources and to identify the least irreversible solution mass flow-rate for the absorber. As a parallel, a refined understanding of the absorption process can be obtained. Considering absorption at the film interface and cooling effect at the tube wall, the analysis thermodynamically characterises the absorption process which occurs inside actual falling film heat exchangers and establishes a criterion for their thermodynamic optimisation. Results suggest the importance to operate at reduced mass flow rates with a thin uniform film. Meanwhile, tension-active additives are required to realise this condition.

    Original languageEnglish
    Pages (from-to)755-765
    Number of pages11
    JournalInternational Journal of Heat and Mass Transfer
    Volume88
    DOIs
    Publication statusPublished - 2015 Sept 1

    Keywords

    • Absorption cycle
    • Entropy generation
    • Horizontal tube
    • Irreversibility

    ASJC Scopus subject areas

    • Mechanical Engineering
    • Condensed Matter Physics
    • Fluid Flow and Transfer Processes

    Fingerprint

    Dive into the research topics of 'Irreversibility analysis of falling film absorption over a cooled horizontal tube'. Together they form a unique fingerprint.

    Cite this