TY - JOUR
T1 - Ladder-type sulfonated poly(arylene perfluoroalkylene)s for high performance proton exchange membrane fuel cells
AU - Long, Zhi
AU - Miyake, Junpei
AU - Miyatake, Kenji
N1 - Funding Information:
This work was partly supported by the New Energy and Industrial Technology Development Organization (NEDO) and by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan through a Grant-in-Aid for Scientic Research (KAKENHI JP18K04746, JP18H02030, JP18H05515, JP18K19111).
Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2020/11/11
Y1 - 2020/11/11
N2 - Sulfonated poly(arylene perfluoroalkylene)s containing a sulfone-bonded ladder structure (SPAF-P-Lad) were synthesized by treating the precursor SPAF-P polymers with oleum as a novel proton exchange membrane for fuel cells. SPAF-P-Lad membranes had excellent solubility in polar organic solvents and high molecular weight (Mn = 145.4-162.9 kDa, Mw = 356.9-399.1 kDa) to provide bendable membranes with ion exchange capacity (IEC) ranging from 1.76 to 2.01 meq. g-1. SPAF-P-Lad membranes possessed higher proton conductivity than that of the precursor SPAF-P membranes because of the stronger water affinity. Compared with SPAF-P membranes (Tg: 72-90 °C, Young's modulus: 0.08-0.42 GPa; yield stress: 5.7-15.1 MPa), SPAF-P-Lad membranes showed better mechanical stability to humidity and temperature and improved tensile properties (Young's modulus: 0.51-0.59 GPa; yield stress: 23.9-29.6 MPa). The selected membrane, SPAF-mP-Lad, exhibited improved fuel cell performance, in particular, under low humidity with air; the current density at 0.5 V was 0.56 A cm-2, while that for SPAF-pP was 0.46 A cm-2. The SPAF-mP-Lad membrane endured an open circuit voltage hold test for 1000 h with average decay of as small as 70 μV h-1. A series of post-analyses including current-voltage characteristics, molecular structure, molecular weight, and IEC suggested very minor degradation of the membrane under the accelerated testing conditions.
AB - Sulfonated poly(arylene perfluoroalkylene)s containing a sulfone-bonded ladder structure (SPAF-P-Lad) were synthesized by treating the precursor SPAF-P polymers with oleum as a novel proton exchange membrane for fuel cells. SPAF-P-Lad membranes had excellent solubility in polar organic solvents and high molecular weight (Mn = 145.4-162.9 kDa, Mw = 356.9-399.1 kDa) to provide bendable membranes with ion exchange capacity (IEC) ranging from 1.76 to 2.01 meq. g-1. SPAF-P-Lad membranes possessed higher proton conductivity than that of the precursor SPAF-P membranes because of the stronger water affinity. Compared with SPAF-P membranes (Tg: 72-90 °C, Young's modulus: 0.08-0.42 GPa; yield stress: 5.7-15.1 MPa), SPAF-P-Lad membranes showed better mechanical stability to humidity and temperature and improved tensile properties (Young's modulus: 0.51-0.59 GPa; yield stress: 23.9-29.6 MPa). The selected membrane, SPAF-mP-Lad, exhibited improved fuel cell performance, in particular, under low humidity with air; the current density at 0.5 V was 0.56 A cm-2, while that for SPAF-pP was 0.46 A cm-2. The SPAF-mP-Lad membrane endured an open circuit voltage hold test for 1000 h with average decay of as small as 70 μV h-1. A series of post-analyses including current-voltage characteristics, molecular structure, molecular weight, and IEC suggested very minor degradation of the membrane under the accelerated testing conditions.
UR - http://www.scopus.com/inward/record.url?scp=85096312945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096312945&partnerID=8YFLogxK
U2 - 10.1039/d0ra08630d
DO - 10.1039/d0ra08630d
M3 - Article
AN - SCOPUS:85096312945
SN - 2046-2069
VL - 10
SP - 41058
EP - 41064
JO - RSC Advances
JF - RSC Advances
IS - 67
ER -