Language model domain adaptation via recurrent neural networks with domain-shared and domain-specific representations

Tsuyoshi Moriokal, Naohiro Tawara, Tetsuji Ogawa, Atsunori Ogawa, Tomoharu Iwata, Tetsunori Kobayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Training recurrent neural network language models (RNNLMs) requires a large amount of data, which is difficult to collect for specific domains such as multiparty conversations. Data augmentation using external resources and model adaptation, which adjusts a model trained on a large amount of data to a target domain, have been proposed for low-resource language modeling. While there are the commonalities and discrepancies between the source and target domains in terms of the statistics of words and their contexts, these methods for domain adaptation make the commonalities and discrepancies jumbled. We propose novel domain adaptation techniques for RNNLM by introducing domain-shared and domain-specific word embedding and contextual features. This explicit modeling of the commonalities and discrepancies would improve the language modeling performance. Experimental comparisons using multiparty conversation data as the target domain augmented by lecture data from the source domain demonstrate that the proposed domain adaptation method exhibits improvements in the perplexity and word error rate over the long short-term memory based language model (LSTMLM) trained using the source and target domain data.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6084-6088
Number of pages5
ISBN (Print)9781538646588
DOIs
Publication statusPublished - 2018 Sept 10
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 2018 Apr 152018 Apr 20

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period18/4/1518/4/20

Keywords

  • Data augmentation
  • Domain adaptation
  • Language models
  • Recurrent neural network

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Language model domain adaptation via recurrent neural networks with domain-shared and domain-specific representations'. Together they form a unique fingerprint.

Cite this