TY - GEN
T1 - Language modeling of Chinese personal names based on character units for continuous Chinese speech recognition
AU - Hu, Xinhui
AU - Yamamoto, Hirofumi
AU - Kikui, Genichiro
AU - Sagisaka, Yoshinori
PY - 2006/1/1
Y1 - 2006/1/1
N2 - In this paper, we analyze Chinese personal names to model their statistical phonotactic characteristics for continuous Chinese speech recognition. The analysis showed languagespecific characteristics of Chinese personal names and strongly suggested the advantage of character-unit oriented modeling. A hierarchical language model was composed by reflecting statistical phonotactic characteristics of Chinese personal names as a lower intra-word model, and ordinary inter-word neighboring characteristics as an upper multi-class composite N-gram model. These two layers of models were trained independently using different language corpora. For the modeling of given names, the syllable without tone information was selected as the unit for training the bi-gram. The properties of either one or two characters of a given name were introduced to simplify the length constraint of the modeling process. For Chinese family names, we simply added them directly in the recognition lexicon, since their numbers are very restricted. The results from Chinese speech recognition experiments revealed that the proposed hierarchical language model greatly improved the identification accuracy of the Chinese given names compared with the conventional wordclass N-gram model.
AB - In this paper, we analyze Chinese personal names to model their statistical phonotactic characteristics for continuous Chinese speech recognition. The analysis showed languagespecific characteristics of Chinese personal names and strongly suggested the advantage of character-unit oriented modeling. A hierarchical language model was composed by reflecting statistical phonotactic characteristics of Chinese personal names as a lower intra-word model, and ordinary inter-word neighboring characteristics as an upper multi-class composite N-gram model. These two layers of models were trained independently using different language corpora. For the modeling of given names, the syllable without tone information was selected as the unit for training the bi-gram. The properties of either one or two characters of a given name were introduced to simplify the length constraint of the modeling process. For Chinese family names, we simply added them directly in the recognition lexicon, since their numbers are very restricted. The results from Chinese speech recognition experiments revealed that the proposed hierarchical language model greatly improved the identification accuracy of the Chinese given names compared with the conventional wordclass N-gram model.
KW - Chinese speech recognition
KW - Hierarchical language model
KW - Personal name identification
UR - http://www.scopus.com/inward/record.url?scp=44949156540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949156540&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:44949156540
SN - 9781604234497
T3 - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
SP - 1874
EP - 1877
BT - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
PB - International Speech Communication Association
T2 - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
Y2 - 17 September 2006 through 21 September 2006
ER -