Abstract
Reinforced concrete (RC) bridges under traffic loads and a severe airborne chloride environment require more frequent and intensive maintenance activities to preserve an adequate performance level. The use of stainless steel (SS) reinforcement in lieu of carbon steel (CS) reinforcement can be a promising alternative to avoid corrosion problems and reduce the maintenance cost. As the airborne chloride intensity depends on the meteorological condition and the distance from coastline, it is essential to determine the appropriate geographical locations where the use of SS rebar provides economic benefits. The main purpose of this paper is to present a novel approach for identifying the location of RC bridge suitable for SS rebar use considering the hazard intensity associated with the airborne chloride based on the probabilistic life-cycle cost (LCC) analysis. A novel probabilistic method for LCC estimation of RC bridge girders under traffic and airborne chloride hazards is established. In an illustrative example, the suitable location and critical distance for SS rebar application in RC bridges under different coastal environments in Japan are identified based on the proposed method. Sensitivity of LCC to four key parameters including discount rate of money, corrosion rate of SS rebar, concrete cover, and water-cement ratio is performed.
Original language | English |
---|---|
Pages (from-to) | 1201-1227 |
Number of pages | 27 |
Journal | Structure and Infrastructure Engineering |
Volume | 16 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2020 Sept 1 |
Keywords
- Reinforced concrete bridges
- airborne chloride hazard
- corrosion-resistant
- failure probability
- life-cycle cost
- stainless steel
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- Safety, Risk, Reliability and Quality
- Geotechnical Engineering and Engineering Geology
- Ocean Engineering
- Mechanical Engineering