LoL-V2T: Large-scale esports video description dataset

Tsunehiko Tanaka, Edgar Simo-Serra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Esports is a fastest-growing new field with a largely online-presence, and is creating a demand for automatic domain-specific captioning tools. However, at the current time, there are few approaches that tackle the esports video description problem. In this work, we propose a large-scale dataset for esports video description, focusing on the popular game "League of Legends". The dataset, which we call LoL-V2T, is the largest video description dataset in the video game domain, and includes 9, 723 clips with 62, 677 captions. This new dataset presents multiple new video captioning challenges such as large amounts of domain-specific vocabulary, subtle motions with large importance, and a temporal gap between most captions and the events that occurred. In order to tackle the issue of vocabulary, we propose a masking the domain-specific words and provide additional annotations for this. In our results, we show that the dataset poses a challenge to existing video captioning approaches, and the masking can significantly improve performance. Our dataset and code is publicly available1.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
PublisherIEEE Computer Society
Pages4552-4561
Number of pages10
ISBN (Electronic)9781665448994
DOIs
Publication statusPublished - 2021 Jun
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 - Virtual, Online, United States
Duration: 2021 Jun 192021 Jun 25

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/6/1921/6/25

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Cite this