Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients

Robert Haller-Dintelmann*, Horst Heck, Matthias Georg Hieber

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L , Let 1 <p, q <∞ and let ω be a Muckenhoupt weight. It is proved that systems of this kind possess a unique solution u satisfying ||u′||Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.

Original languageEnglish
Pages (from-to)717-736
Number of pages20
JournalJournal of the London Mathematical Society
Volume74
Issue number3
DOIs
Publication statusPublished - 2006 Dec
Externally publishedYes

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients'. Together they form a unique fingerprint.

Cite this