Abstract
Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L ∞, Let 1 <p, q <∞ and let ω be a Muckenhoupt weight. It is proved that systems of this kind possess a unique solution u satisfying ||u′||Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.
Original language | English |
---|---|
Pages (from-to) | 717-736 |
Number of pages | 20 |
Journal | Journal of the London Mathematical Society |
Volume | 74 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2006 Dec |
Externally published | Yes |
ASJC Scopus subject areas
- Mathematics(all)