Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal

Simona Liliana Iconaru, Régis Guégan, Cristina Liana Popa, Mikael Motelica-Heino*, Carmen Steluta Ciobanu, Daniela Predoi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)

Abstract

The aim of this study consisted to develop novel synthetic magnetite nanoparticles (nFe3O4) with preferential reactivity to trace elements (TE) for possible environmental applications as adsorbents. The synthetic magnetite materials obtained through the co-precipitation of both Fe3 + and Fe2 + ions (Fe2 + / Fe3 + = 0.5) were characterized by a set of complementary techniques: X-ray diffraction, transmission and scanning electron microscopy, Fourier transform infrared and Raman spectroscopy, and BET adsorption method. The resulting nFe3O4 displayed a wide specific surface area (100 m2 g− 1) with particles reaching a size of about 10 nm, smaller than those of the well-crystallized commercial ones (cFe3O4) estimated at 80 nm while showing a BET surface area of 6.8 m2 g− 1. The adsorption properties of the synthetic nFe304 magnetite nanoparticles were characterized and compared to the commercial analogous with the adsorption of both As and Cu. The equilibrium adsorption isotherms were properly fitted with Langmuir and Freundlich equation models and suggested that the developed iron oxides nanoparticles display a certain potential for removal and/or immobilization of TE from contaminated waters and/or soils, with an increase of 69.5% of the adsorbed amount compared to that of the commercial ones.

Original languageEnglish
Pages (from-to)128-135
Number of pages8
JournalApplied Clay Science
Volume134
DOIs
Publication statusPublished - 2016 Dec 1
Externally publishedYes

Keywords

  • Adsorption
  • Arsenic
  • Copper
  • Magnetite
  • Nanoparticles

ASJC Scopus subject areas

  • Geology
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal'. Together they form a unique fingerprint.

Cite this