TY - GEN
T1 - Manifold HLDA and its application to robust speech recognition
AU - Kubo, Toshiaki
AU - Ogawa, Tetsuji
AU - Kobayashi, Tetsunori
PY - 2006/1/1
Y1 - 2006/1/1
N2 - A manifold heteroscedastic linear discriminant analysis (MHLDA) which removes environmental information explicitly from the useful information for discrimination is proposed. Usually, a feature parameter used in pattern recognition involves categorical information and also environmental information. A well-known HLDA tries to extract useful information (UI) to represent categorical information from the feature parameter. However, environmental information is still remained in the UI parameters extracted by HLDA, and it causes slight degradation in performance. This is because HLDA does not handle the environmental information explicitly. The proposed MHLDA also tries to extract UI like HLDA, but it handles environmental information explicitly. This handling makes MHLDA-based UI parameter less influenced of environment. However, as compensation, in MHLDA, the categorical information is little bit destroyed. In this paper, we try to combine HLDA-based UI and MHLDA-based UI for pattern recognition, and draw benefit of both parameters. Experimental results show the effectiveness of this combining method.
AB - A manifold heteroscedastic linear discriminant analysis (MHLDA) which removes environmental information explicitly from the useful information for discrimination is proposed. Usually, a feature parameter used in pattern recognition involves categorical information and also environmental information. A well-known HLDA tries to extract useful information (UI) to represent categorical information from the feature parameter. However, environmental information is still remained in the UI parameters extracted by HLDA, and it causes slight degradation in performance. This is because HLDA does not handle the environmental information explicitly. The proposed MHLDA also tries to extract UI like HLDA, but it handles environmental information explicitly. This handling makes MHLDA-based UI parameter less influenced of environment. However, as compensation, in MHLDA, the categorical information is little bit destroyed. In this paper, we try to combine HLDA-based UI and MHLDA-based UI for pattern recognition, and draw benefit of both parameters. Experimental results show the effectiveness of this combining method.
KW - HLDA
KW - MHLDA
KW - Robust speech recognition
UR - http://www.scopus.com/inward/record.url?scp=44949192117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949192117&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:44949192117
SN - 9781604234497
T3 - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
SP - 1551
EP - 1554
BT - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
PB - International Speech Communication Association
T2 - INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006 - ICSLP
Y2 - 17 September 2006 through 21 September 2006
ER -