TY - JOUR
T1 - Maximum principle for fully nonlinear equations via the iterated comparison function method
AU - Koike, Shigeaki
AU - Świȩch, Andrzej
PY - 2007/10/1
Y1 - 2007/10/1
N2 - We present various versions of generalized Aleksandrov-Bakelman-Pucci (ABP) maximum principle for L p -viscosity solutions of fully nonlinear second-order elliptic and parabolic equations with possibly superlinear-growth gradient terms and unbounded coefficients. We derive the results via the "iterated" comparison function method, which was introduced in our previous paper (Koike and Świȩch in Nonlin. Diff. Eq. Appl. 11, 491-509, 2004) for fully nonlinear elliptic equations. Our results extend those of (Koike and Świȩch in Nonlin. Diff. Eq. Appl. 11, 491-509, 2004) and (Fok in Comm. Partial Diff. Eq. 23(5-6), 967-983) in the elliptic case, and of (Crandall et al. in Indiana Univ. Math. J. 47(4), 1293-1326, 1998; Comm. Partial Diff. Eq. 25, 1997-2053, 2000; Wang in Comm. Pure Appl. Math. 45, 27-76, 1992) and (Crandall and Świȩch in Lecture Notes in Pure and Applied Mathematics, vol. 234. Dekker, New York, 2003) in the parabolic case.
AB - We present various versions of generalized Aleksandrov-Bakelman-Pucci (ABP) maximum principle for L p -viscosity solutions of fully nonlinear second-order elliptic and parabolic equations with possibly superlinear-growth gradient terms and unbounded coefficients. We derive the results via the "iterated" comparison function method, which was introduced in our previous paper (Koike and Świȩch in Nonlin. Diff. Eq. Appl. 11, 491-509, 2004) for fully nonlinear elliptic equations. Our results extend those of (Koike and Świȩch in Nonlin. Diff. Eq. Appl. 11, 491-509, 2004) and (Fok in Comm. Partial Diff. Eq. 23(5-6), 967-983) in the elliptic case, and of (Crandall et al. in Indiana Univ. Math. J. 47(4), 1293-1326, 1998; Comm. Partial Diff. Eq. 25, 1997-2053, 2000; Wang in Comm. Pure Appl. Math. 45, 27-76, 1992) and (Crandall and Świȩch in Lecture Notes in Pure and Applied Mathematics, vol. 234. Dekker, New York, 2003) in the parabolic case.
UR - http://www.scopus.com/inward/record.url?scp=34547398432&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547398432&partnerID=8YFLogxK
U2 - 10.1007/s00208-007-0125-z
DO - 10.1007/s00208-007-0125-z
M3 - Article
AN - SCOPUS:34547398432
SN - 0025-5831
VL - 339
SP - 461
EP - 484
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 2
ER -