TY - JOUR
T1 - Metallomics analysis for assessment of toxic metal burdens in infants/children and their mothers
T2 - Early assessment and intervention are essential
AU - Yasuda, Hiroshi
AU - Tsutsui, Toyoharu
AU - Suzuki, Katsuhiko
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1
Y1 - 2021/1
N2 - Accumulation of toxic metals in infants/children is of serious concern worldwide, from the viewpoint of their harmful effects on the normal growth and development. This metallomics study investigates the extent of toxic metal burdens in infants/children and the relationship to those in their mothers for 77 child/mother pair subjects. For mercury, its geometric mean concentration in infants/children was of similar level to that in their mothers, and a high-significant close correlation was observed between infants/children and their mothers (β = 0.758, r = 0.539, p < 0.0001). A significant but less intimate mother/child relationship was observed for arsenic (β = 0.301, r = 0.433), lead (β = 0.444, r = 0.471) and aluminum (β = 0.379, r = 0.451). Remarkably, the burden levels of lead, cadmium and aluminum in infants/children were approximately three times higher than those in their mothers (p < 0.0001), and the burden levels in some individuals were several tens of times higher than in the mothers. In contrast, some essential metal levels such as zinc, magnesium and calcium in infants/children were significantly lower than those in their mothers, and 29 individuals (37.7%) in the child subjects were estimated to be zinc-deficient. In addition, significant inverse correlations were observed between zinc and lead (r = −0.267, p = 0.019), and magnesium and arsenic (r = −0.514, p < 0.0001). These findings suggest that these toxic metal burdens and essential metal deficiencies in infants/children are of serious concern for their neurodevelopment, indicating that the early assessment and intervention are crucial. It is expected that larger epidemiological and intervention studies will provide a reasonable and essential pathway for intervention of neurodevelopment disorders.
AB - Accumulation of toxic metals in infants/children is of serious concern worldwide, from the viewpoint of their harmful effects on the normal growth and development. This metallomics study investigates the extent of toxic metal burdens in infants/children and the relationship to those in their mothers for 77 child/mother pair subjects. For mercury, its geometric mean concentration in infants/children was of similar level to that in their mothers, and a high-significant close correlation was observed between infants/children and their mothers (β = 0.758, r = 0.539, p < 0.0001). A significant but less intimate mother/child relationship was observed for arsenic (β = 0.301, r = 0.433), lead (β = 0.444, r = 0.471) and aluminum (β = 0.379, r = 0.451). Remarkably, the burden levels of lead, cadmium and aluminum in infants/children were approximately three times higher than those in their mothers (p < 0.0001), and the burden levels in some individuals were several tens of times higher than in the mothers. In contrast, some essential metal levels such as zinc, magnesium and calcium in infants/children were significantly lower than those in their mothers, and 29 individuals (37.7%) in the child subjects were estimated to be zinc-deficient. In addition, significant inverse correlations were observed between zinc and lead (r = −0.267, p = 0.019), and magnesium and arsenic (r = −0.514, p < 0.0001). These findings suggest that these toxic metal burdens and essential metal deficiencies in infants/children are of serious concern for their neurodevelopment, indicating that the early assessment and intervention are crucial. It is expected that larger epidemiological and intervention studies will provide a reasonable and essential pathway for intervention of neurodevelopment disorders.
KW - Child/mother relationship
KW - Early assessment and intervention
KW - Infantile time window
KW - Metal imbalance
KW - Metal-metal correlations
KW - Metallomics analysis
KW - Toxic metal burdens
KW - Zinc deficiency
UR - http://www.scopus.com/inward/record.url?scp=85098778834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098778834&partnerID=8YFLogxK
U2 - 10.3390/biom11010006
DO - 10.3390/biom11010006
M3 - Article
C2 - 33374671
AN - SCOPUS:85098778834
SN - 2218-273X
VL - 11
SP - 1
EP - 11
JO - Biomolecules
JF - Biomolecules
IS - 1
M1 - 6
ER -