Method for estimation of structural composition of skin layers based on light propagation simulation for liposuction applications

Sangha Song, Inko Elguezua, Yo Kobayashi, Masakatsu G. Fujie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Skin surface irregularity is the most common side effect after liposuction. To reduce this, it is necessary to devise a systematic method to provide structural composition details of skin layers, such as fat thickness and fat boundary tilt angle, for the plastic surgeon. Several commercial portable devices are available to measure skin layer information, working on the principle of a near-infrared technique using the light penetration properties of tissue in optical windows. However, these can only measure general fat thickness and not the structural compositions of skin layers with irregularities. Therefore, our goal in this paper is to propose a method to estimate the structural compositions of skin layers by analyzing and validating the relationship between light distribution and structural composition from simulation data based on specific structural conditions.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6565-6568
Number of pages4
ISBN (Print)9781424479290
DOIs
Publication statusPublished - 2014 Nov 2
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 2014 Aug 262014 Aug 30

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period14/8/2614/8/30

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Method for estimation of structural composition of skin layers based on light propagation simulation for liposuction applications'. Together they form a unique fingerprint.

Cite this