Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N'-dicyanoquinonediimine)2Cu (where R1,R2=CH3,CH3O,Cl,Br)

H. Kobayashi*, A. Miyamoto, R. Kato, F. Sakai, A. Kobayashi, Y. Yamakita, Y. Furukawa, M. Tasumi, T. Watanabe

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

123 Citations (Scopus)

Abstract

The unique molecular conductors with pπ-d mixing band structures (R1,R2-N,N'-dicyanoquinonediimine)2Cu [(R1,R2-DCNQI)2Cu] (R1,R2=CH3,CH3O,Cl,Br) were examined. General features of the phase diagram of the DCNQI-Cu system were depicted. A region that is related to the existence of anomalously heavy-metal electrons has been found. The T2 dependence of the low-temperature resistivity of the alloyed system (DMe1-xMeBrx-DCNQI)2Cu (where Me=CH3) suggests a large enhancement of the electron mass at the critical situation where the system begins to exhibit a characteristic metal instability. The mixed valency of Cu (Cu+1.3) in (DMe-DCNQI)2Cu was confirmed by ir experiments performed on neutral DMe-DCNQI crystals and (DMe-DCNQI)2M (M=Li, Ba, Cu). The same conclusion was also derived from a low-temperature x-ray-diffraction experiment. The gradual temperature dependences of the ir absorption intensities of totally symmetric modes of (DBr-DCNQI)2Cu observed below the metal-insulator transition temperature (TMI) are in contrast with the discontinuous resistivity and susceptibility changes at TMI. This may be attributable to the existence of two driving forces characterizing the M-I transition. One is the sharp charge ordering in Cu sites and the other is the continuous development of charge-density waves on DCNQI stacks. The arrangement of Cu2+ and Cu+ below TMI was determined by an x-ray crystal-structure analysis of the threefold insulating phase of (MeBr-DCNQI)2Cu at 110 K. The nearest-neighbor Cu2+ ions interact with each other via two DCNQI molecules. A plausible spin structure of the antiferromagnetic ground state was proposed. According to this spin-structure model, the magnetic moments of Cu2+ along the crystallographic c axis will be arranged ferromagnetically.

Original languageEnglish
Pages (from-to)3500-3510
Number of pages11
JournalPhysical Review B
Volume47
Issue number7
DOIs
Publication statusPublished - 1993
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N'-dicyanoquinonediimine)2Cu (where R1,R2=CH3,CH3O,Cl,Br)'. Together they form a unique fingerprint.

Cite this