TY - JOUR
T1 - Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake
AU - Yonemura, S.
AU - Yokozawa, M.
AU - Kawashima, S.
AU - Tsuruta, H.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2000/7
Y1 - 2000/7
N2 - CO and H2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H2 may be attributable to differences in CO and H2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer.
AB - CO and H2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H2 may be attributable to differences in CO and H2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer.
UR - http://www.scopus.com/inward/record.url?scp=0033928182&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033928182&partnerID=8YFLogxK
U2 - 10.3402/tellusb.v52i3.17075
DO - 10.3402/tellusb.v52i3.17075
M3 - Article
AN - SCOPUS:0033928182
SN - 0280-6509
VL - 52
SP - 919
EP - 933
JO - Tellus, Series B: Chemical and Physical Meteorology
JF - Tellus, Series B: Chemical and Physical Meteorology
IS - 3
ER -