Molecular recognition of 4-nonylphenol on a layered silicate modified with organic functionalities

Yusuke Ide, Shota Iwasaki, Makoto Ogawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

A layered alkali silicate, octosilicate (Na2Si8O 17), modified with the controlled amount and ratio of octadecyl and phenyl groups was synthesized to control the spatial distribution of the two functional groups and then achieve the effective and selective adsorption of 4-nonylphenol from aqueous solution. Octosilicates modified with the varied amount and ratio of the attached octadecyl/phenyl groups (0.7/0.7, 0.4/0.4, 0.3/0.3, and 0.4/1.0 groups per Si8O17 unit, respectively) were prepared by the reaction of the dodecylammonium-exchanged octosilicate with a controlled amount of octadecyltrichlorosilane and phenyltrichlorosilane sequentially. The adsorption of 4-nonylphenol from water on the four silylated octosilicates was investigated to find that the adsorption isotherm for the silylated octosilicate bearing the surface coverage with octadecyl/phenyl groups of 0.7/0.7 groups per Si8O17 unit was H-type, while the other silylated octosilicates gave S-type adsorption isotherms. The silylated octosilicate having surface coverage with octadecyl/phenyl groups of 0.7/0.7 groups per Si8O17 unit selectively adsorbed 4-nonylphenol from aqueous mixture of 4-butylphenol, 4-hexylphenol, and 4-nonylphenol.

Original languageEnglish
Pages (from-to)2522-2527
Number of pages6
JournalLangmuir
Volume27
Issue number6
DOIs
Publication statusPublished - 2011 Mar 15

ASJC Scopus subject areas

  • Electrochemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Materials Science(all)
  • Spectroscopy

Fingerprint

Dive into the research topics of 'Molecular recognition of 4-nonylphenol on a layered silicate modified with organic functionalities'. Together they form a unique fingerprint.

Cite this