Abstract
This paper investigates the use of time-domain convolutional denoising autoencoders (TCDAEs) with multiple channels as a method of speech enhancement. In general, denoising autoencoders (DAEs), deep learning systems that map noise-corrupted into clean waveforms, have been shown to generate high-quality signals while working in the time domain without the intermediate stage of phase modeling. Convolutional DAEs are one of the popular structures which learns a mapping between noise-corrupted and clean waveforms with convolutional denoising autoencoder. Multi-channel signals for TCDAEs are promising because the different times of arrival of a signal can be directly processed with their convolutional structure, Up to this time, TCDAEs have only been applied to single-channel signals. This paper explorers the effectiveness of TCDAEs in a multichannel configuration. A multi-channel TCDAEs are evaluated on multi-channel speech enhancement experiments, yielding significant improvement over single-channel DAEs in terms of signal-to-distortion ratio, perceptual evaluation of speech quality (PESQ), and word error rate.
Original language | English |
---|---|
Pages (from-to) | 86-90 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2019-September |
DOIs | |
Publication status | Published - 2019 |
Event | 20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria Duration: 2019 Sept 15 → 2019 Sept 19 |
Keywords
- Dilated convolutional network
- Multi-channel speech enhancement
- Time-domain denoising autoencoder
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modelling and Simulation