Abstract
To improve the optical absorptance of a solar selective absorber over a wide wavelength range, an eight-layered metal-dielectric film structure was designed by the transfer matrix method and fabricated with the magnetron sputtering method. The experimental results showed that the multilayered film structure yields a high solar absorptance of 98.3% with excellent spectral selectivity over a wide angular range in the solar radiation region of 250-2000 nm, a total hemispherical emittance of 0.12 at 400 K, and nearly unchanged reflectance after heat treatment at 673 K for 48 h in vacuum, indicating the high efficiency of the photo-to-thermal conversion achieved for the sample to have the potential being practically applied in many fields.
Original language | English |
---|---|
Article number | 066428 |
Journal | Materials Research Express |
Volume | 5 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 Jun |
Keywords
- metal-dielectric film structure
- photo-to-thermal conversion
- solar absorptance
- solar selective absorber
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Polymers and Plastics
- Metals and Alloys