Nanoscale membrane strips for benign sensing of HgII ions: A route to commercial waste treatments

Sherif A. El-Safty, Deivasigamani Prabhakaran, Yoshimichi Kiyozumi, Fujio Mizukami

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

The integration of actively-functional receptors into nanoscale networks outperformed competent detection devices and other ion-sensing designs. Synthesis of azo chromophores with long hydrophobic tails showed an ecofriendly sensing and an extreme selectivity for divalent mercury analytes. In order to tailor the tip to HgII ion-sensing functionality, we manipulated the chromophores into nanoscale membrane discs, which led to small, easy-to-use optical sensor strips. The design of these hydrophobic probes into ordered pore-based membranes transformed the ion-sensing systems into smart, stable assemblies and portable laboratory assays. The nanosensor membrane strips with chemical and mechanical stability allowed for reversible, stable and reusable detectors without any structural damage, even under rigorous chemical treatment for several numbers of repeated cycles. The optical membrane strips provided HgII ion-sensing recognition for both cost- and energy-saving systems. Indeed, the synthetic strips proved to have an efficient ability for various analytical applications, targeting especially for on-site and in situ chemical analyses, and for continuous monitoring of toxic HgII ions. On the proximity-sensing front, these miniaturized nanomembrane strips can revolutionize the consumer and industrial market with the introduction of the probe surface-mount naked-eye ion-sensor strips.

Original languageEnglish
Pages (from-to)1739-1750
Number of pages12
JournalAdvanced Functional Materials
Volume18
Issue number12
DOIs
Publication statusPublished - 2008 Jun 24
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Materials Science(all)
  • Condensed Matter Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Nanoscale membrane strips for benign sensing of HgII ions: A route to commercial waste treatments'. Together they form a unique fingerprint.

Cite this