Abstract
The classification of remotely sensed multispectral data using classical statistical methods has been worked on for several decades. Recently there have been many new developments in neural network (NN) research, and many new applications have been studied. It is well known that NN approaches have the ability to classify without assuming a distribution. We have proposed an NN model to combine the spectral and spacial information of a LANDSAT TM image. In this paper, we apply the NN approach with a normalization method to classify multi-temporal LANDSAT TM images in order to investigate the robustness of our approach. From our experiments, we have confirmed that our approach is more effective for the classification of multi-temporal data than the original NN approach and maximum likelihood approach.
Original language | English |
---|---|
Pages (from-to) | 1295-1300 |
Number of pages | 6 |
Journal | IEICE Transactions on Information and Systems |
Volume | E78-D |
Issue number | 10 |
Publication status | Published - 1995 Oct 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering
- Artificial Intelligence