NMS by representative region: Towards crowded pedestrian detection by proposal pairing

Xin Huang, Zheng Ge, Zequn Jie, Osamu Yoshie

Research output: Contribution to journalConference articlepeer-review

78 Citations (Scopus)

Abstract

Although significant progress has been made in pedestrian detection recently, pedestrian detection in crowded scenes is still challenging. The heavy occlusion between pedestrians imposes great challenges to the standard Non-Maximum Suppression (NMS). A relative low threshold of intersection over union (IoU) leads to missing highly overlapped pedestrians, while a higher one brings in plenty of false positives. To avoid such a dilemma, this paper proposes a novel Representative Region NMS (R2NMS) approach leveraging the less occluded visible parts, effectively removing the redundant boxes without bringing in many false positives. To acquire the visible parts, a novel Paired-Box Model (PBM) is proposed to simultaneously predict the full and visible boxes of a pedestrian. The full and visible boxes constitute a pair serving as the sample unit of the model, thus guaranteeing a strong correspondence between the two boxes throughout the detection pipeline. Moreover, convenient feature integration of the two boxes is allowed for the better performance on both full and visible pedestrian detection tasks. Experiments on the challenging CrowdHuman [20] and CityPersons [24] benchmarks sufficiently validate the effectiveness of the proposed approach on pedestrian detection in the crowded situation.

Original languageEnglish
Article number9157025
Pages (from-to)10747-10756
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
Publication statusPublished - 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 2020 Jun 142020 Jun 19

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'NMS by representative region: Towards crowded pedestrian detection by proposal pairing'. Together they form a unique fingerprint.

Cite this