Abstract
In this paper, a feature named Non-Redundant Gradient Semantic Local Binary Patterns (NRGSLBP) is proposed for pedestrian detection as a modified version of conventional Semantic Local Binary Patterns (SLBP). Calculations of this feature are carried out for both intensity and gradient magnitude image so that texture and gradient information are combined. Moreover, non-redundant patterns are adopted on SLBP for the first time, allowing better discrimination. Compared with SLBP, no additional cost of the feature dimensions NRGSLBP is necessary and the calculation complexity is considerably smaller than that of other features. Experimental results on several datasets show that the detection rate of our proposed feature outperforms those of other features such as Histogram of Orientated Gradient (HOG), Histogram of Templates (HOT), Bidirectional Local Template Patterns (BLTP), Gradient Local Binary Patterns (GLBP), SLBP and Covariance matrix (COV).
Original language | English |
---|---|
Title of host publication | European Signal Processing Conference |
Publisher | European Signal Processing Conference, EUSIPCO |
Pages | 1407-1411 |
Number of pages | 5 |
ISBN (Print) | 9780992862619 |
Publication status | Published - 2014 Nov 10 |
Event | 22nd European Signal Processing Conference, EUSIPCO 2014 - Lisbon Duration: 2014 Sept 1 → 2014 Sept 5 |
Other
Other | 22nd European Signal Processing Conference, EUSIPCO 2014 |
---|---|
City | Lisbon |
Period | 14/9/1 → 14/9/5 |
Keywords
- feature extraction
- non-redundant gradient semantic local binary patterns
- Pedestrian detection
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering