TY - JOUR
T1 - Novel photon-counting low-dose computed tomography using a multi-pixel photon counter
AU - Morita, H.
AU - Oshima, T.
AU - Kataoka, J.
AU - Arimoto, M.
AU - Nitta, H.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/6/11
Y1 - 2017/6/11
N2 - X-ray computed tomography (CT) is widely used in diagnostic imaging. Owing to a strong radiation exposure associated with this method, numerous proposals have been made for reducing the radiation dose. In addition, conventional CT does not provide information on the energy associated with each X-ray photon because intensity is rather high, typically amounts to 107−9cps/mm2. Here, we propose a novel, low-dose photon-counting CT system based on a multi-pixel photon counter (MPPC) and a high-speed scintillator. To demonstrate high signal-to-noise ratio utilizing the internal gain and the fast time response of the MPPC, we compared CT images acquired under the same conditions among a photodiode (PD), an avalanche photodiode and a MPPC. In particular, the images' contrast-to-noise ratio (CNR) acquired using the MPPC improved 12.6-fold compared with the images acquired in conventional CT using a PD. We also performed energy-resolved imaging by adopting 4 energy thresholds of 20, 40, 60, and 80 keV. We confirmed a substantial improvement of the imaging contrast as well as a reduction in the beam hardening for the CT images. We conclude that the proposed MPPC-based detector is likely to be a promising device for use in future CT scanners.
AB - X-ray computed tomography (CT) is widely used in diagnostic imaging. Owing to a strong radiation exposure associated with this method, numerous proposals have been made for reducing the radiation dose. In addition, conventional CT does not provide information on the energy associated with each X-ray photon because intensity is rather high, typically amounts to 107−9cps/mm2. Here, we propose a novel, low-dose photon-counting CT system based on a multi-pixel photon counter (MPPC) and a high-speed scintillator. To demonstrate high signal-to-noise ratio utilizing the internal gain and the fast time response of the MPPC, we compared CT images acquired under the same conditions among a photodiode (PD), an avalanche photodiode and a MPPC. In particular, the images' contrast-to-noise ratio (CNR) acquired using the MPPC improved 12.6-fold compared with the images acquired in conventional CT using a PD. We also performed energy-resolved imaging by adopting 4 energy thresholds of 20, 40, 60, and 80 keV. We confirmed a substantial improvement of the imaging contrast as well as a reduction in the beam hardening for the CT images. We conclude that the proposed MPPC-based detector is likely to be a promising device for use in future CT scanners.
KW - APD
KW - Low dose
KW - MPPC
KW - Photon counting CT
UR - http://www.scopus.com/inward/record.url?scp=85016719000&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016719000&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2017.02.015
DO - 10.1016/j.nima.2017.02.015
M3 - Article
AN - SCOPUS:85016719000
SN - 0168-9002
VL - 857
SP - 58
EP - 65
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
ER -