Numerical analysis on the rate-determining factors of depressurization- induced gas production from methane hydrate cores

Yoshihiro Konno*, Yoshihiro Masuda, Hiroyuki Oyama, Masanori Kurihara, Hisanao Ouchi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)


Depressurization is a gas recovery method to dissociate methane hydrate (MH) by lowering wellbore pressure below the hydrate stability pressure. Depressurization method is considered to be the most promising method because the highest energy profit ratio could be achieved among proposed methods. However, the gas productivity of MH production wells is much different depending reservoir properties such as permeability and temperature. In order to understand the key factors for depressurization method, we performed laboratory scale depressurization experiments using artificial MH cores and analyzed the rate-determining factors of gas production by numerical simulations. There are three major factors to determine the depressurization-induced gas production rate: kinetic of MH dissociation, gas flow through the reservoir, and heat transfer to the dissociating zone. The gas production behavior significantly changes depending on these rate-determining factors. Thus, the analysis on rate-determining factors is crucial to understanding the gas productivity and is applicable for developing the strategy of depressurization-induced gas production. In order to analyze the rate-determining factors, we calculated the potential methane fluxes generated by kinetic of MH dissociation, gas flow and heat transfer, and compared these methane fluxes. We conducted numerical simulations using MH21-HYDRES (MH21 Hydrate Reservoir Simulator) to calculate the potential methane fluxes during MH dissociation. From the calculation and comparison of the potential methane fluxes in the experiments, we concluded that gas productions in the laboratory scale experiments were mainly limited by heat transfer. For a low permeability core, the fluid flow dominated gas production behavior in a very early stage. However, the rate-determining factor transited from the fluid flow to the heat transfer immediately because the permeability increased with time by hydrate dissociation. The kinetic of hydrate dissociation had a limited role in determining the gas production rate from MH hydrate cores. We also discussed the experimental condition required to simulate the gas production behaviors in field scale reservoirs. Analysis on rate-determining factors in field-scale hydrate reservoirs will be an issue in the future; it should give us a clue to 1) understanding the applicable reservoir conditions of depressurization method, and 2) developing the suitable Enhanced Methane Hydrate Recovery (EMHR) method for hydrate deposits expected poor productivity by depressurization.

Original languageEnglish
Title of host publicationOffshore Technology Conference 2010, OTC 2010
PublisherOffshore Technology Conference
Number of pages10
ISBN (Print)9781617384264
Publication statusPublished - 2010
Externally publishedYes

Publication series

NameProceedings of the Annual Offshore Technology Conference
ISSN (Print)0160-3663

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Ocean Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering


Dive into the research topics of 'Numerical analysis on the rate-determining factors of depressurization- induced gas production from methane hydrate cores'. Together they form a unique fingerprint.

Cite this