Numerical and experimental study on residual stress in gray cast iron stress lattice shape casting

Yuichi Motoyama*, Hiroki Takahashi, Toshimitsu Okane, Yoya Fukuda, Makoto Yoshida

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The prediction of residual stress in a stress lattice shape casting (stress lattice) has been conducted and discussed by some researchers via the Finite Element Method (FEM). However, most of the previous studies used the first-order tetrahedral element, which has poor analysis accuracy in problems including bending. The use of the first-order tetrahedral element makes the verification of these studies uncertain because the bending deformation essentially occurs in the stress lattice casting. This study first shows that the thermal stress analysis for the stress lattice should use the element that can represent the bending deformation in principle for bending of the thin parts. Second, the simulated residual stress was compared with the measured value. The thermal stress analysis successfully predicted the residual stress of the stress lattice casting with and 11 pct difference. In addition to the prediction of the residual stress, it is important from the viewpoint of the productivity of castings to reveal the effect of the shake-out temperature on the residual stress. However, in the previous studies, conclusions concerning the effect of the shake-out temperature on the residual stress were not consistent (i.e., the one study said the higher shake-out temperature decreased the residual stress, and another study said a higher shake-out temperature increased the residual stress). Therefore, the current study first discusses the reason for the inconsistent conclusions in the previous studies. Second, stress lattice castings were cast and shaken out at various shake-out temperatures. Then, the current study validated the effect of the shake-out temperature on the residual stress. Consequently, the experimental results supported the conclusion of Kasch and Mikelonis that the shake-out at higher temperature contributed to the increase of the residual stress in the casting.

Original languageEnglish
Pages (from-to)3261-3270
Number of pages10
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume44
Issue number7
DOIs
Publication statusPublished - 2013 Jul

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Numerical and experimental study on residual stress in gray cast iron stress lattice shape casting'. Together they form a unique fingerprint.

Cite this