Numerical study on the adaptation of diesel wave breakup model for large-eddy simulation of non-reactive gasoline spray

Ratnak Sok, Beini Zhou, Jin Kusaka

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Gasoline direct injection (GDI) is a promising solution to increase engine thermal efficiency and reduce exhaust gas emissions. The GDI operation requires an understanding of fuel penetration and droplet size, which can be investigated numerically. In the numerical simulation, primary and secondary breakup phenomena are studied by the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup models. The models were initially developed for diesel fuel injection, and in the present work, the models are extended to the GDI application combined using large-eddy simulation (LES). The simulation is conducted using the KIVA4 code. Measured data of experimental spray penetration and Miescattering image comparisons are carried out under nonreactive conditions at an ambient temperature of 613K and a density of 4.84 kg/m3. The spray penetration and structures using LES are compared with traditional Reynolds-Averaged Navier-Stokes (RANS). Grid size effects in the simulation using LES and RANS models are also investigated to find a reasonable cell size for future reactive gasoline spray/combustion studies. The fuel spray penetration and droplet size are dependent on specific parameters. Parametric studies on the effects of adjustable constants of the KH-RT models, such as time constants, size constants, and breakup length constant, are discussed. Liquid penetrations from the RANS turbulence model are similar to that of the LES turbulence model's prediction. However, the RANS model is not able to capture the spray structure well.

Original languageEnglish
Title of host publicationProceedings of the ASME 2021 Power Conference, POWER 2021
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885109
Publication statusPublished - 2021
EventASME 2021 Power Conference, POWER 2021 - Virtual, Online
Duration: 2021 Jul 202021 Jul 22

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER


ConferenceASME 2021 Power Conference, POWER 2021
CityVirtual, Online

ASJC Scopus subject areas

  • Mechanical Engineering
  • Energy Engineering and Power Technology


Dive into the research topics of 'Numerical study on the adaptation of diesel wave breakup model for large-eddy simulation of non-reactive gasoline spray'. Together they form a unique fingerprint.

Cite this