Abstract
Endotracheal intubation (ETI) is a difficult technique and requires a great deal of practice to master. Research on the difference in movements between experts and novices performing the procedure has shown that experts perform movements more precisely than novices. Experts keep a fixed posture and use the upper arm muscles and wrist joints more effectively. These studies were conducted using optical motion capture systems and surface electromyography (sEMG), which are measurement systems that require a long setup time and expensive equipment. In this paper, we propose a novel method to measure the biomechanical performance of doctors during ETI using an innovative muscle contraction sensing device (MC sensor) and inertial measurement units (IMUs). We performed several experiments to measure the movements of both experts and novices performing ETI and then analysed and compared the obtained data. The results clearly showed that our system, comprising an MC sensor and IMUs, allows for an objective evaluation of ETI skills and highlighted the major differences between the movements of novices and experts.
Original language | English |
---|---|
Title of host publication | 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1862-1867 |
Number of pages | 6 |
ISBN (Print) | 9781479973965 |
DOIs | |
Publication status | Published - 2014 Apr 20 |
Event | 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014 - Bali, Indonesia Duration: 2014 Dec 5 → 2014 Dec 10 |
Other
Other | 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014 |
---|---|
Country/Territory | Indonesia |
City | Bali |
Period | 14/12/5 → 14/12/10 |
ASJC Scopus subject areas
- Biotechnology
- Artificial Intelligence
- Human-Computer Interaction