Abstract
We introduce the notion of skinniness for subsets ofP ë and its variants, namely skinnier and skinniest. We show that under some cardinal arithmetical assumptions, precipitousness or 2ë-saturation of NSë | X, where NSë denotes the non-stationary ideal over Pë, implies the existence of a skinny stationary subset of X. We also show that if ë is a singular cardinal, then there is no skinnier stationary subset of Pë. Furthermore, if ë is a strong limit singular cardinal, there is no skinny stationary subset of Pë. Combining these results, we show that if ë is a strong limit singular cardinal, then NSë | X can satisfy neither precipitousness nor 2ë-saturation for every stationary X Pë. We also indicate that ë(Eë <), where Eë < def = { < ë cf() < }, is equivalent to the existence of a skinnier (or skinniest) stationary subset of Pë under some cardinal arithmetical hypotheses.
Original language | English |
---|---|
Pages (from-to) | 667-680 |
Number of pages | 14 |
Journal | Journal of Symbolic Logic |
Volume | 78 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2013 Jun |
Externally published | Yes |
ASJC Scopus subject areas
- Philosophy
- Logic