TY - JOUR
T1 - On some free boundary problem for a compressible barotropic viscous fluid flow
AU - Enomoto, Yuko
AU - von Below, Lorenz
AU - Shibata, Yoshihiro
N1 - Funding Information:
L. von Below was partially supported by DFG IRTG 1529 at TU Darmstadt. Y. Shibata was partially supported by JST CREST and JSPS Grant-in-aid for Scientific Research (S) # 24224004.
PY - 2014/5
Y1 - 2014/5
N2 - In this paper, we prove a local in time unique existence theorem for the freeboundary problem of a compressible barotropic viscous fluid flow without surface tensionin the Lp in time and Lq in space framework with 2 < p < ∞ and N < q < ∞ under the assumption that the initial domain is a uniform W2-1/qq one in ℝN (N ≥ 2).After transforming a unknown time dependent domain to the initial domain by theLagrangian transformation, we solve problem by the Banach contraction mappingprinciple based on the maximal Lp-Lq regularity of the generalized Stokes operatorfor the compressible viscous fluid flowwith free boundary condition. The key issue forthe linear theorem is the existence of R-bounded solution operator in a sector, whichcombined with Weis's operator valued Fourier multiplier theorem implies the generationof analytic semigroup and the maximal Lp-Lq regularity theorem. The nonlinearproblem we studied here was already investigated by several authors (Denisova andSolonnikov, St. Petersburg Math J 14:1-22, 2003; J Math Sci 115:2753-2765, 2003; Secchi, Commun PDE 1:185-204, 1990; Math Method Appl Sci 13:391-404, 1990;Secchi and Valli, J Reine Angew Math 341:1-31, 1983; Solonnikov and Tani, Constantincarathéodory: an international tribute, vols 1, 2, pp 1270-1303,World ScientificPublishing, Teaneck, 1991; Lecture notes in mathematics, vol 1530, Springer, Berlin,1992; Tani, J Math Kyoto Univ 21:839-859, 1981; Zajaczkowski, SIAM JMath Anal25:1-84, 1994) in the L2 framework and Hölder spaces, but our approach is differentfrom them.
AB - In this paper, we prove a local in time unique existence theorem for the freeboundary problem of a compressible barotropic viscous fluid flow without surface tensionin the Lp in time and Lq in space framework with 2 < p < ∞ and N < q < ∞ under the assumption that the initial domain is a uniform W2-1/qq one in ℝN (N ≥ 2).After transforming a unknown time dependent domain to the initial domain by theLagrangian transformation, we solve problem by the Banach contraction mappingprinciple based on the maximal Lp-Lq regularity of the generalized Stokes operatorfor the compressible viscous fluid flowwith free boundary condition. The key issue forthe linear theorem is the existence of R-bounded solution operator in a sector, whichcombined with Weis's operator valued Fourier multiplier theorem implies the generationof analytic semigroup and the maximal Lp-Lq regularity theorem. The nonlinearproblem we studied here was already investigated by several authors (Denisova andSolonnikov, St. Petersburg Math J 14:1-22, 2003; J Math Sci 115:2753-2765, 2003; Secchi, Commun PDE 1:185-204, 1990; Math Method Appl Sci 13:391-404, 1990;Secchi and Valli, J Reine Angew Math 341:1-31, 1983; Solonnikov and Tani, Constantincarathéodory: an international tribute, vols 1, 2, pp 1270-1303,World ScientificPublishing, Teaneck, 1991; Lecture notes in mathematics, vol 1530, Springer, Berlin,1992; Tani, J Math Kyoto Univ 21:839-859, 1981; Zajaczkowski, SIAM JMath Anal25:1-84, 1994) in the L2 framework and Hölder spaces, but our approach is differentfrom them.
KW - Compressible viscous fluid
KW - Free boundary problem
KW - Local in time existence theorem
KW - R-bounded solution operator
UR - http://www.scopus.com/inward/record.url?scp=84899840501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899840501&partnerID=8YFLogxK
U2 - 10.1007/s11565-013-0194-8
DO - 10.1007/s11565-013-0194-8
M3 - Article
AN - SCOPUS:84899840501
SN - 0430-3202
VL - 60
SP - 55
EP - 89
JO - Annali dell'Universita di Ferrara
JF - Annali dell'Universita di Ferrara
IS - 1
ER -