Abstract
The Degasperis-Procesi (DP) equation is investigated from the point of view of determinant-Pfaffian identities. The reciprocal link between the DP equation and the pseudo 3-reduction of the C∞ two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of Pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and Pfaffians, and the τ-functions of the DP equation are obtained from the pseudo 3-reduction of the C∞ two-dimensional Toda system.
Original language | English |
---|---|
Article number | 045205 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 46 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2013 Feb 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Modelling and Simulation
- Mathematical Physics
- Physics and Astronomy(all)