Abstract
The reciprocal link between the reduced Ostrovsky equation and the A (2) 2 two-dimensional Toda (2D-Toda) system is used to construct the N-soliton solution of the reduced Ostrovsky equation. The N-soliton solution of the reduced Ostrovsky equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations and the τ-function of the reduced Ostrovsky equation are obtained from the period 3-reduction of the B or C 2D-Toda system, i.e. the A (2) 2 2D-Toda system. One of the τ-functions of the A (2) 2 2D-Toda system becomes the square of a pfaffian which also becomes a solution of the reduced Ostrovsky equation. There is another bilinear equation which is a member of the 3-reduced extended BKP hierarchy. Using this bilinear equation, we can also construct the same pfaffian solution.
Original language | English |
---|---|
Article number | 355203 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 45 |
Issue number | 35 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Modelling and Simulation
- Mathematical Physics
- Physics and Astronomy(all)