On the pH-responsive, charge-selective, polymer-brush-mediated transport probed by traditional and scanning fluorescence correlation spectroscopy

C. R. Daniels, L. J. Tauzin, E. Foster, R. C. Advincula, C. F. Landes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

The complete and reversible charge-selective sequestration of fluorophores by a weak polyelectrolyte brush, poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) was demonstrated using fluorescence correlation spectroscopy (FCS). The chemistry and thickness of the weak polyelectrolyte PDMAEMA was tuned reversibly between neutral and cationic polymer forms. Thus, by switching the pH successively, the brush architecture was tuned to selectively trap and release anionic dye probes while continuously excluding cationic molecules. In addition, line-scan FCS was implemented and applied for the first time to a synthetic polymer system and used to identify a new, slower diffusion time on the order of seconds for the sequestered anionic probe under acidic conditions. These results, which quantify the selective sequestration properties of the PDMAEMA brush, are important because they enable a better understanding of transport in polymers and establish a spectroscopic means of evaluating materials with proposed applications in separations science, charge storage/release, and environmental remediation.

Original languageEnglish
Pages (from-to)4284-4290
Number of pages7
JournalJournal of Physical Chemistry B
Volume117
Issue number16
DOIs
Publication statusPublished - 2013 Apr 25
Externally publishedYes

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'On the pH-responsive, charge-selective, polymer-brush-mediated transport probed by traditional and scanning fluorescence correlation spectroscopy'. Together they form a unique fingerprint.

Cite this