On the radiality of constrained minimizers to the Schrödinger-Poisson- Slater energy

Vladimir Georgiev*, Francesca Prinari, Nicola Visciglia

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

We study the radial symmetry of minimizers to the Schrödinger-Poisson- Slater (S-P-S) energy:infu εH1(R3) ∥u∥L2(R3)=ρ12∫R3|Δu| 2+14∫R3R3|u(x)|2| u(y)|2|x-y|dxdy-1p∫R3|u|pdx provided that 2<p<3 and ρ is small. The main result shows that minimizers are radially symmetric modulo suitable translation.

Original languageEnglish
Pages (from-to)369-376
Number of pages8
JournalAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
Volume29
Issue number3
DOIs
Publication statusPublished - 2012
Externally publishedYes

ASJC Scopus subject areas

  • Analysis
  • Mathematical Physics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the radiality of constrained minimizers to the Schrödinger-Poisson- Slater energy'. Together they form a unique fingerprint.

Cite this