TY - JOUR
T1 - Origin of low-Ca pyroxene in amoeboid olivine aggregates
T2 - Evidence from oxygen isotopic compositions
AU - Krot, Alexander N.
AU - Fagan, Timothy J.
AU - Nagashima, Kazuhide
AU - Petaev, Michael I.
AU - Yurimoto, Hisayoshi
N1 - Funding Information:
We thank H. C. Connolly Jr., A. M. Davis, and S. S. Russell for the constructive reviews. This work was supported by NASA grants NAG5-10610 (A. N. Krot, P.I.), NAG5-11591 (K. Keil, P.I.), NAG5-10484 (S. B. Jacobsen, P.I.), and Monkasho grants (H. Yurimoto, P.I.). This is Hawaii Institute of Geophysics and Planetology publication No. 1371 and School of Ocean and Earth Science and Technology publication No. 6543.
PY - 2005/4/1
Y1 - 2005/4/1
N2 - Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Falt;2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<5 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O lt; -20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < -20‰), whereas those of (iii) are 16O-depleted (Δ17O = -6‰ to -4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ -22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ -11‰). We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.
AB - Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Falt;2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<5 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O lt; -20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < -20‰), whereas those of (iii) are 16O-depleted (Δ17O = -6‰ to -4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ -22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ -11‰). We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.
UR - http://www.scopus.com/inward/record.url?scp=16244418688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16244418688&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2004.06.046
DO - 10.1016/j.gca.2004.06.046
M3 - Article
AN - SCOPUS:16244418688
SN - 0016-7037
VL - 69
SP - 1873
EP - 1881
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
IS - 7
ER -