Out-of-plane visual servoing method for tracking the carotid artery with a robot-assisted ultrasound diagnostic system

Ryu Nakadate*, Jorge Solis, Atsuo Takanishi, Eiichi Minagawa, Motoaki Sugawara, Kiyomi Niki

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Citations (Scopus)

Abstract

Up to now, there are different kinds of robot-assisted ultrasound diagnostic systems proposed in the last decade. However, the compensation of the ultrasound probe position according to the patient movement is still one of the most important and useful functions required for those systems. For this purpose, in this research, we aim at developing an automated diagnostic system for the measurement of the wave intensity which is usually measured at the common carotid artery. In particular, in this paper, we focus on proposing a robust visual servoing method for tracking out-of-plane motion for a robot-assisted medical ultrasound diagnostic system by using a conventional 2D probe. A robotic device which manipulates the ultrasound probe firstly scans a small area around the target position and records several B-mode images at a regular interval. In order to track the out-of-plane motion, an inter-frame block matching method has been proposed and implemented on the Waseda-Tokyo Women's Medical-Aloka Blood Flow Measurement System No. 2 Refined (WTA-2R). A set of experiments was proposed to verify the effectiveness of the proposed method. From the experimental results, we could confirm its robustness while doing the task with real human tissues.

Original languageEnglish
Title of host publication2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Pages5267-5272
Number of pages6
DOIs
Publication statusPublished - 2011 Dec 1
Event2011 IEEE International Conference on Robotics and Automation, ICRA 2011 - Shanghai, China
Duration: 2011 May 92011 May 13

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Country/TerritoryChina
CityShanghai
Period11/5/911/5/13

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Out-of-plane visual servoing method for tracking the carotid artery with a robot-assisted ultrasound diagnostic system'. Together they form a unique fingerprint.

Cite this