Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose Composite electrodes

Aamir Razaq*, Leif Nyholm, Martin Sjödin, Maria Strømme, Albert Mihranyan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

163 Citations (Scopus)

Abstract

Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 μm-thick chopped carbon filaments, can be used as electrode materials to obtain paper-based energy-storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g -1 (PPy) are obtained for paper-based electrodes at potential scan rates as high as 500 mV s -1, whereas cell capacitances of ∼ 60-70 F g -1 (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm -2) when charged to 0.6 V using current densities as high as 31 A g -1 based on the PPy weight (i.e., 99 mA cm -2). Energy and power densities of 1.75 Wh kg -1 and 2.7 kW kg -1, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g -1 (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low-cost and environmentally friendly paper-based energy-storage devices for high-power applications.

Original languageEnglish
Pages (from-to)445-454
Number of pages10
JournalAdvanced Energy Materials
Volume2
Issue number4
DOIs
Publication statusPublished - 2012 Apr
Externally publishedYes

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose Composite electrodes'. Together they form a unique fingerprint.

Cite this