Performance demonstration of a novel photon-counting CT for preclinical application

T. Toyoda*, J. Kataoka, M. Sagisaka, M. Arimoto, D. Sato, K. Yoshiura, H. Kawashima, S. Kobayashi, J. Kotoku, S. Terazawa, S. Shiota, M. Ueda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Photon-counting computed tomography (PC-CT) has attracted attention over the last few years as the next-generation CT technique that solves the problems encountered in clinical CT. In PC-CT, dark current and electronic noise can be reduced by setting the energy threshold to exceed the noise level, which leads to a low-dose scan. Furthermore, multiple energy thresholds realize multicolor CT imaging, which is not possible with clinical CT. Recently, we proposed a novel PC-CT system consisting of a multipixel photon counter (MPPC) coupled with a high-speed scintillator, performing simultaneous imaging of multiple contrast agents and estimate concentration. However, the PC-CT images obtained by our PC-CT system faces some limitations, such as degradation of image quality due to the lack of photon statistics and/or image resolution loss due to the pixel size of the detectors. In this study, the signal-to-noise ratio (SNR) of the PC-CT images was improved by applying machine-learning models, that is, U-Net and Noise2Noise, to the PC-CT images. In addition, a new imaging method was developed to acquire the high-resolution CT images required for clinical use. As a result, the resolution of the CT images improved from 1.04 mm to 0.77 mm. Finally, the visualization of contrast agents in plants was set as a challenge for the next step towards the clinical application of MPPC-based PC-CT. The results demonstrate that our PC-CT system can provide color imaging not only in phantom-based experiments, but also in plants close to an organism.


  • High-resolution
  • K-edge imaging
  • MPPC
  • Machine learning
  • Photon-counting CT

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation


Dive into the research topics of 'Performance demonstration of a novel photon-counting CT for preclinical application'. Together they form a unique fingerprint.

Cite this