Performance tuning of genetic algorithms with reserve selection

Yang Chen*, Jinglu Hu, Kotaro Hirasawa, Songnian Yu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

This paper provides a deep insight into the performance of genetic algorithms with reserve selection (GARS), and investigates how parameters can be regulated to solve optimization problems more efficiently. First of all, we briefly present GARS, an improved genetic algorithm with a reserve selection mechanism which helps to avoid premature convergence. The comparable results to state-of-the-art techniques such as fitness scaling and sharing demonstrate both the effectiveness and the robustness of GARS in global optimization. Next, two strategies named Static RS and Dynamic RS are proposed for tuning the parameter reserve size to optimize the performance of GARS. Empirical studies conducted in several cases indicate that the optimal reserve size is problem dependent.

Original languageEnglish
Title of host publication2007 IEEE Congress on Evolutionary Computation, CEC 2007
Pages2202-2209
Number of pages8
DOIs
Publication statusPublished - 2007 Dec 1
Event2007 IEEE Congress on Evolutionary Computation, CEC 2007 - , Singapore
Duration: 2007 Sept 252007 Sept 28

Publication series

Name2007 IEEE Congress on Evolutionary Computation, CEC 2007

Conference

Conference2007 IEEE Congress on Evolutionary Computation, CEC 2007
Country/TerritorySingapore
Period07/9/2507/9/28

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Performance tuning of genetic algorithms with reserve selection'. Together they form a unique fingerprint.

Cite this