TY - JOUR
T1 - Permian volcanism in the Mongolian orogenic zone, northeast China
T2 - Geochemistry, magma sources and petrogenesis
AU - Yongfeng, Z. H U
AU - Shihua, S. U N
AU - Libing, G. U.
AU - Ogasawara, Yoshihide
AU - Jiang, Neng
AU - Honma, Hiroji
PY - 2001
Y1 - 2001
N2 - Lower Permian volcanism was the first magmatic activity to occur after the collision events in the Mongolian orogenic zone, east China. The Permian volcanic rocks are therefore a key to understanding the dynamics of the unified continental lithosphere. The volcanic rocks consist of basic and intermediate rocks. The intermediate rocks with high initial 87Sr/86Sr ratios (0.7051 to 0.7052) and low εNd values (-0.73 to -3.57) generally overlie the basic rocks in the field. The basic rocks have relatively low initial 87Sr/86Sr ratios (0.7034 to 0.7051) and high εNd values (2.72 to -0.10). Two parallel Rb-Sr isochrons give almost the same age, about 270 Ma. One consists of the basic rocks giving an initial isochron 87Sr/86Sr ratio of 0.7035. The other consists of the intermediate rocks and one sample of basalt, which give an initial isochron 87Sr/86Sr value of 0.7051. The strong correlations between SiO2 and other major elements suggest that fractional crystallization played an important role in the magmatic processes. However, fractional crystallization cannot explain the geochemistry of most incompatible trace elements and Sr-Nd isotope characteristics. The positive correlation between Th/Nb and (La/Sm)N ratios demonstrates the direct relation between the enrichment of the light rare earth elements and the contamination of continental sediments. The high contents of large ion lithosphere elements (LILE) in the Permian volcanic rocks may suggest an additional 'crust + fluid' component, especially in the intermediate rocks, which are highly enriched in Ba (>400 ppm) relative to the basic rocks (< 200 ppm). We propose that the subduction slab dropped into depleted mantle and released fluid, which induced the mantle metasomatism and LILE enrichment. The metasomatized mantle partially melted and formed the 'primary' magma. This primary magma assimilated with the Proterozoic biotite-quartz schist during its rise, and finally formed the Permian volcanic rocks. Magma assimilated with the Proterozoic biotite-quartz schist in small amounts could have produced the basic rocks, while assimilation of larger amounts of magma (because of longer assimilation time) would generate intermediate rocks.
AB - Lower Permian volcanism was the first magmatic activity to occur after the collision events in the Mongolian orogenic zone, east China. The Permian volcanic rocks are therefore a key to understanding the dynamics of the unified continental lithosphere. The volcanic rocks consist of basic and intermediate rocks. The intermediate rocks with high initial 87Sr/86Sr ratios (0.7051 to 0.7052) and low εNd values (-0.73 to -3.57) generally overlie the basic rocks in the field. The basic rocks have relatively low initial 87Sr/86Sr ratios (0.7034 to 0.7051) and high εNd values (2.72 to -0.10). Two parallel Rb-Sr isochrons give almost the same age, about 270 Ma. One consists of the basic rocks giving an initial isochron 87Sr/86Sr ratio of 0.7035. The other consists of the intermediate rocks and one sample of basalt, which give an initial isochron 87Sr/86Sr value of 0.7051. The strong correlations between SiO2 and other major elements suggest that fractional crystallization played an important role in the magmatic processes. However, fractional crystallization cannot explain the geochemistry of most incompatible trace elements and Sr-Nd isotope characteristics. The positive correlation between Th/Nb and (La/Sm)N ratios demonstrates the direct relation between the enrichment of the light rare earth elements and the contamination of continental sediments. The high contents of large ion lithosphere elements (LILE) in the Permian volcanic rocks may suggest an additional 'crust + fluid' component, especially in the intermediate rocks, which are highly enriched in Ba (>400 ppm) relative to the basic rocks (< 200 ppm). We propose that the subduction slab dropped into depleted mantle and released fluid, which induced the mantle metasomatism and LILE enrichment. The metasomatized mantle partially melted and formed the 'primary' magma. This primary magma assimilated with the Proterozoic biotite-quartz schist during its rise, and finally formed the Permian volcanic rocks. Magma assimilated with the Proterozoic biotite-quartz schist in small amounts could have produced the basic rocks, while assimilation of larger amounts of magma (because of longer assimilation time) would generate intermediate rocks.
UR - http://www.scopus.com/inward/record.url?scp=0035049595&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035049595&partnerID=8YFLogxK
U2 - 10.1017/S0016756801005210
DO - 10.1017/S0016756801005210
M3 - Article
AN - SCOPUS:0035049595
SN - 0016-7568
VL - 138
SP - 101
EP - 115
JO - Geological Magazine
JF - Geological Magazine
IS - 2
ER -