TY - GEN
T1 - Personal Data Analytics to Facilitate Cyber Individual Modeling
AU - Zhou, Xiaokang
AU - Wu, Bo
AU - Jin, Qun
AU - Ma, Jianhua
AU - Li, Weimin
AU - Yen, Neil Y.
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/11
Y1 - 2016/10/11
N2 - The high development of emerging computing paradigms, such as Ubiquitous Computing, Mobile Computing, and Social Computing, has brought us a big change from all walks of our work, life, learning and entertainment. Especially, with the high accessibility of social networking services along with the increasingly pervasive use of portable wireless mobile computing devices, more and more populations have been engaged into this kind of integration of real physical world and cyber digital space, which can be called the hyper world. To help people live better in the highly developed information society, the so-called cyber-individual (Cyber-I), which is far beyond a user model or a software agent to assist a user, has been proposed to provide the most comprehensive digital entities for its corresponding Real-I in terms of the individual's experience, behavior, and thinking as well as his or her birth, growth, and death. In this study, we concentrate on the personal data analytics to facilitate the cyber individual modeling. Organic Stream is introduced to systematically organize and refine the personal stream data, which can help improve the data processing and management in the CI-Spine tier and CI-Pivot tier of Cyber-I. The DSUN (Dynamically Socialized User Networking) model is employed to better utilize the collective intelligence from a group of users, which can help improve the CI-Mind tier to make Cyber-I to become more robust. Based on these, we discuss the functional modules for the facilitation of cyber individual modeling. Finally, a scenario is given, and the experimental results are presented to demonstrate that the valuable outcomes from the personal analysis can be utilized to enrich the Cyber-I, and provide users with more suitable services.
AB - The high development of emerging computing paradigms, such as Ubiquitous Computing, Mobile Computing, and Social Computing, has brought us a big change from all walks of our work, life, learning and entertainment. Especially, with the high accessibility of social networking services along with the increasingly pervasive use of portable wireless mobile computing devices, more and more populations have been engaged into this kind of integration of real physical world and cyber digital space, which can be called the hyper world. To help people live better in the highly developed information society, the so-called cyber-individual (Cyber-I), which is far beyond a user model or a software agent to assist a user, has been proposed to provide the most comprehensive digital entities for its corresponding Real-I in terms of the individual's experience, behavior, and thinking as well as his or her birth, growth, and death. In this study, we concentrate on the personal data analytics to facilitate the cyber individual modeling. Organic Stream is introduced to systematically organize and refine the personal stream data, which can help improve the data processing and management in the CI-Spine tier and CI-Pivot tier of Cyber-I. The DSUN (Dynamically Socialized User Networking) model is employed to better utilize the collective intelligence from a group of users, which can help improve the CI-Mind tier to make Cyber-I to become more robust. Based on these, we discuss the functional modules for the facilitation of cyber individual modeling. Finally, a scenario is given, and the experimental results are presented to demonstrate that the valuable outcomes from the personal analysis can be utilized to enrich the Cyber-I, and provide users with more suitable services.
KW - Cyber-I
KW - Data Analysis
KW - Social Networking Service
KW - User Modeling
KW - Web Mining
UR - http://www.scopus.com/inward/record.url?scp=84995414702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84995414702&partnerID=8YFLogxK
U2 - 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.22
DO - 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.22
M3 - Conference contribution
AN - SCOPUS:84995414702
T3 - Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big Data Intelligence and Computing, DataCom 2016 and 2016 IEEE Cyber Science and Technology Congress, CyberSciTech 2016, DASC-PICom-DataCom-CyberSciTech 2016
SP - 39
EP - 46
BT - Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big Data Intelligence and Computing, DataCom 2016 and 2016 IEEE Cyber Science and Technology Congress, CyberSciTech 2016, DASC-PICom-DataCom-CyberSciTech 2016
A2 - Wang, Kevin I-Kai
A2 - Jin, Qun
A2 - Bhuiyan, Md Zakirul Alam
A2 - Zhang, Qingchen
A2 - Hsu, Ching-Hsien
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 14th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2016, 2nd IEEE International Conference on Big Data Intelligence and Computing, DataCom 2016 and 2016 IEEE Cyber Science and Technology Congress, CyberSciTech 2016, DASC-PICom-DataCom-CyberSciTech 2016
Y2 - 8 August 2016 through 10 August 2016
ER -