TY - JOUR
T1 - Photoinduced 120-degree spin order in the Kondo-lattice model on a triangular lattice
AU - Inoue, Takashi
AU - Mochizuki, Masahito
N1 - Funding Information:
Research reported in this paper was supported by a grant from the Population Center Foundation of the Philippines. An earlier version was presented at the General Conference of the International Union for the Scientific Study of Population, Manila, 1981. I am grateful for the helpful comments of Marilou Palabrica-Costello, Robert Johnson, and two anonymous referees.
Publisher Copyright:
© 2022 American Physical Society.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - We theoretically predict the emergence of 120-degree spin order as a nonequilibrium steady state in the photodriven Kondo-lattice model on a triangular lattice. In the system away from the half filling with ferromagnetic ground state, the photoexcitation of conduction electrons and the photoinduced renormalization of bandwidth cause reconstruction of the band structure and subsequent redistribution of the electrons through relaxations, which result in an electronic structure similar to that in the half-filled system at equilibrium, where the 120-degree spin order is stabilized. In this photoinduced 120-degree spin ordered phase, domains of different spin-ordered planes are formed, and vortices of spin chirality vectors called Z2 vortices appear at points where multiple domains meet. We also discuss favorable conditions and experimental feasibility to observe the predicted photoinduced magnetic phase transition by investigating dependencies on the light parameters (amplitude, frequency, and polarization), the electron filling, the strength of Kondo coupling, and the effects of antiferromagnetic coupling among the localized spins. Photoinduced magnetic structures proposed so far have been limited to simple collinear (anti)ferromagnetic orders or local magnetic defects in magnets. The present work paves a way to the optical creation of complex noncollinear magnetisms as a global nonequilibrium steady phase in photodriven systems.
AB - We theoretically predict the emergence of 120-degree spin order as a nonequilibrium steady state in the photodriven Kondo-lattice model on a triangular lattice. In the system away from the half filling with ferromagnetic ground state, the photoexcitation of conduction electrons and the photoinduced renormalization of bandwidth cause reconstruction of the band structure and subsequent redistribution of the electrons through relaxations, which result in an electronic structure similar to that in the half-filled system at equilibrium, where the 120-degree spin order is stabilized. In this photoinduced 120-degree spin ordered phase, domains of different spin-ordered planes are formed, and vortices of spin chirality vectors called Z2 vortices appear at points where multiple domains meet. We also discuss favorable conditions and experimental feasibility to observe the predicted photoinduced magnetic phase transition by investigating dependencies on the light parameters (amplitude, frequency, and polarization), the electron filling, the strength of Kondo coupling, and the effects of antiferromagnetic coupling among the localized spins. Photoinduced magnetic structures proposed so far have been limited to simple collinear (anti)ferromagnetic orders or local magnetic defects in magnets. The present work paves a way to the optical creation of complex noncollinear magnetisms as a global nonequilibrium steady phase in photodriven systems.
UR - http://www.scopus.com/inward/record.url?scp=85128991774&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128991774&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.105.144422
DO - 10.1103/PhysRevB.105.144422
M3 - Article
AN - SCOPUS:85128991774
SN - 2469-9950
VL - 105
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
IS - 14
M1 - 144422
ER -