Abstract
We applied time-resolved near-field optical microscopic measurements with ultrashort light pulses of ∼16 fs duration to observe plasmon dephasing processes in single gold nanorods. The correlation widths of the time-resolved signals obtained at each position on the nanorods were broadened compared with the autocorrelation width of the pulse because of the plasmon lifetime. The correlation width maps of the rods showed spatially oscillating patterns that look similar to the plasmon mode structures observed in the static near-field optical images. The spatial variation of the correlation widths was explained as arising from the position-dependent contribution of the resonant plasmon excitation in the time-resolved signals relative to that of the nonresonant excitation. This finding indicates that the dephasing times of the resonant plasmon modes were constant regardless of the excitation position. This result is understood to be a consequence of the spatial coherence of the plasmon mode that causes the local excitation to be immediately delocalized across the rod after irradiation. A comparison between the time-resolved signals of the inner parts and the outer parts of the nanorods suggests that the nonresonant contribution to the time-resolved signals may be driven by the lower-order plasmon modes having resonances in a much longer wavelength region.
Original language | English |
---|---|
Pages (from-to) | 16215-16222 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry C |
Volume | 119 |
Issue number | 28 |
DOIs | |
Publication status | Published - 2015 Jul 16 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films