TY - JOUR
T1 - Platelet-Derived Stromal Cell-Derived Factor-1 Is Required for the Transformation of Circulating Monocytes into Multipotential Cells
AU - Seta, Noriyuki
AU - Okazaki, Yuka
AU - Miyazaki, Hiroshi
AU - Kato, Takashi
AU - Kuwana, Masataka
PY - 2013/9/16
Y1 - 2013/9/16
N2 - Background:We previously described a primitive cell population derived from human circulating CD14+ monocytes, named monocyte-derived multipotential cells (MOMCs), which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s) derived from circulating CD14- cells. The present study was conducted to identify factors that induce MOMC differentiation.Methods:We cultured CD14+ monocytes on fibronectin in the presence or absence of platelets, CD14- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages.Results:The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF)-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1′s critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14+CXCR4high cell population.Conclusion:The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.
AB - Background:We previously described a primitive cell population derived from human circulating CD14+ monocytes, named monocyte-derived multipotential cells (MOMCs), which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s) derived from circulating CD14- cells. The present study was conducted to identify factors that induce MOMC differentiation.Methods:We cultured CD14+ monocytes on fibronectin in the presence or absence of platelets, CD14- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages.Results:The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF)-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1′s critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14+CXCR4high cell population.Conclusion:The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.
UR - http://www.scopus.com/inward/record.url?scp=84884199569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884199569&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0074246
DO - 10.1371/journal.pone.0074246
M3 - Article
C2 - 24066125
AN - SCOPUS:84884199569
SN - 1932-6203
VL - 8
JO - PloS one
JF - PloS one
IS - 9
M1 - e74246
ER -