TY - JOUR
T1 - Polymer-Based White-Light-Emitting Electrochemical Cells with Very High Color-Rendering Index Based on Blue-Green Fluorescent Polyfluorenes and Red-Phosphorescent Iridium Complexes
AU - Nishikitani, Yoshinori
AU - Cho, Tetsuyuki
AU - Uchida, Soichi
AU - Nishimura, Suzushi
AU - Oyaizu, Kenichi
AU - Nishide, Hiroyuki
N1 - Publisher Copyright:
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/5
Y1 - 2018/5
N2 - Application of the concept of three-color (red (R), green (G), and blue (B)) light-mixing to obtain white light is the most suitable way to realize white-light-emitting devices with very high color-rendering indices (CRI). White-light-emitting devices based on the three-color-mixing method could be used to create lighting and display technologies. Here, white-light-emitting electrochemical cells (LECs) with very high CRIs are reported, which were fabricated by using blend films composed of a fluorescent π-conjugated polymer (FCP), poly(9,9-dioctylfluorene-co-benzothiadiazole) (PFBT), and a phosphorescent iridium complex, [Ir(ppy)2(biq)]+(PF6)− (where (ppy)−=2-phenylpyridinate and biq=2,2′-biquinoline). The LECs fabricated with PFBT, the benzothiadiazole content of which is 0.01 mol %, showed blue electroluminescence (EL) emission originating from the fluorene segments and green EL emission from the benzothiadiazole units simultaneously. White LECs were then realized by adding red-emitting Ir complexes as guest molecules to the blue-green-emitting PFBT. By optimizing the proportions of the PFBT and Ir complexes in the active layers (PFBT/[Ir(ppy)2(biq)]+(PF6)−=1:0.2 (mass ratio)), white-light emission with Commission Internationale de l′Eclairage (CIE) coordinates of (0.29, 0.34) and a very high CRI value of 91.5 was achieved through RGB color-mixing. It was noted that the emission mechanism was based on Förster resonance energy transfer and Dexter energy transfer from excited PFBT to [Ir(ppy)2(biq)]+(PF6)−. The utilization of LECs based on blue-green FCPs and red Ir complexes looks very promising for the prospect of realizing white-light-emitting devices with very high CRIs.
AB - Application of the concept of three-color (red (R), green (G), and blue (B)) light-mixing to obtain white light is the most suitable way to realize white-light-emitting devices with very high color-rendering indices (CRI). White-light-emitting devices based on the three-color-mixing method could be used to create lighting and display technologies. Here, white-light-emitting electrochemical cells (LECs) with very high CRIs are reported, which were fabricated by using blend films composed of a fluorescent π-conjugated polymer (FCP), poly(9,9-dioctylfluorene-co-benzothiadiazole) (PFBT), and a phosphorescent iridium complex, [Ir(ppy)2(biq)]+(PF6)− (where (ppy)−=2-phenylpyridinate and biq=2,2′-biquinoline). The LECs fabricated with PFBT, the benzothiadiazole content of which is 0.01 mol %, showed blue electroluminescence (EL) emission originating from the fluorene segments and green EL emission from the benzothiadiazole units simultaneously. White LECs were then realized by adding red-emitting Ir complexes as guest molecules to the blue-green-emitting PFBT. By optimizing the proportions of the PFBT and Ir complexes in the active layers (PFBT/[Ir(ppy)2(biq)]+(PF6)−=1:0.2 (mass ratio)), white-light emission with Commission Internationale de l′Eclairage (CIE) coordinates of (0.29, 0.34) and a very high CRI value of 91.5 was achieved through RGB color-mixing. It was noted that the emission mechanism was based on Förster resonance energy transfer and Dexter energy transfer from excited PFBT to [Ir(ppy)2(biq)]+(PF6)−. The utilization of LECs based on blue-green FCPs and red Ir complexes looks very promising for the prospect of realizing white-light-emitting devices with very high CRIs.
KW - FRET
KW - conjugated polymers
KW - electrochemical cells
KW - phosphorescent triplet emitters
KW - white light emission
UR - http://www.scopus.com/inward/record.url?scp=85047663165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047663165&partnerID=8YFLogxK
U2 - 10.1002/cplu.201800198
DO - 10.1002/cplu.201800198
M3 - Article
C2 - 31957353
AN - SCOPUS:85047663165
SN - 2192-6506
VL - 83
SP - 463
EP - 469
JO - ChemPlusChem
JF - ChemPlusChem
IS - 5
ER -