TY - JOUR
T1 - Post-annealing temperature dependences of electrical properties and surface morphologies for arsenic ion-implanted 4H-SiC at high temperature
AU - Senzaki, J.
AU - Fukuda, K.
AU - Imai, S.
AU - Tanaka, Y.
AU - Kobayashi, Naoto
AU - Tanoue, H.
AU - Okushi, H.
AU - Arai, K.
PY - 2000/6
Y1 - 2000/6
N2 - High-temperature ion implantation of arsenic (As+) into the 4H-silicon carbide (SiC) substrates with high dose of 7×1015 cm-2 has been investigated as an effective doping method of n-type dopant for SiC power electron devices fabrication. Regardless of the ion implantation temperature, the sheet resistances (Rs) decrease below 1600 °C post-annealing and increase above 1700 °C as the post-annealing temperature increases. The specified low Rs value is achieved in the sample implanted at 500 °C and annealed at 1600 °C, an order of magnitude smaller than that implanted at room temperature (RT). Atomic force microscopy (AFM) images reveal that the surface roughness of ion-implanted SiC increases with the increase of post-annealing temperature. Secondary ion mass spectroscopy (SIMS) results show that As+ dopant depth profiles of the sample implanted at 500 °C do not change before and after the post-annealing. On the other hand, for the sample implanted at RT, the As+ concentration in the ion-implanted layer decreases due to the outer-diffusion. These results indicate that high-temperature ion implantation is an effective method to prevent the outer-diffusion of As+ dopants during high-temperature post-annealing. It is considered that these post-annealing temperature dependences are caused by the evaporation of SiC surface layer.
AB - High-temperature ion implantation of arsenic (As+) into the 4H-silicon carbide (SiC) substrates with high dose of 7×1015 cm-2 has been investigated as an effective doping method of n-type dopant for SiC power electron devices fabrication. Regardless of the ion implantation temperature, the sheet resistances (Rs) decrease below 1600 °C post-annealing and increase above 1700 °C as the post-annealing temperature increases. The specified low Rs value is achieved in the sample implanted at 500 °C and annealed at 1600 °C, an order of magnitude smaller than that implanted at room temperature (RT). Atomic force microscopy (AFM) images reveal that the surface roughness of ion-implanted SiC increases with the increase of post-annealing temperature. Secondary ion mass spectroscopy (SIMS) results show that As+ dopant depth profiles of the sample implanted at 500 °C do not change before and after the post-annealing. On the other hand, for the sample implanted at RT, the As+ concentration in the ion-implanted layer decreases due to the outer-diffusion. These results indicate that high-temperature ion implantation is an effective method to prevent the outer-diffusion of As+ dopants during high-temperature post-annealing. It is considered that these post-annealing temperature dependences are caused by the evaporation of SiC surface layer.
UR - http://www.scopus.com/inward/record.url?scp=0034205671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034205671&partnerID=8YFLogxK
U2 - 10.1016/S0169-4332(00)00093-3
DO - 10.1016/S0169-4332(00)00093-3
M3 - Article
AN - SCOPUS:0034205671
SN - 0169-4332
VL - 159
SP - 544
EP - 549
JO - Applied Surface Science
JF - Applied Surface Science
ER -