Prediction of mind-wandering with electroencephalogram and non-linear regression modeling

Issaku Kawashima*, Hiroaki Kumano

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

Original languageEnglish
Article number365
JournalFrontiers in Human Neuroscience
Publication statusPublished - 2017 Jul 12


  • Electroencephalogram
  • Machine learning
  • Mind-wandering
  • Neuro-feedback
  • Support vector machine regression

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience


Dive into the research topics of 'Prediction of mind-wandering with electroencephalogram and non-linear regression modeling'. Together they form a unique fingerprint.

Cite this